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Abstract: We introduce our fuzzy signature and pattern matching with
possibility calculation based approach for modelling the communication
between human-control robot and a pair of assistant robots for
completing cooperative tasks in a simulated environment. We show that
a sophisticated extension using computerised recognition of eye gaze
with fuzzy modelling based interpretation of possible intentions effectively
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The experiment results show a good improvement of time saved by the
use of our eye gaze intention in the context.
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1 Introduction

Intelligent robots and artificial agents, with their multi-model representations have
been developed over the past decade with the expectation that they would be able
to assist human to work more easily and cooperatively without active direction
under a variety of circumstances. Compared with single robot or agent systems, it is
obvious that multiple robots systems are much more effective and will be able to
perform tasks that a single robot can not do. Furthermore, they can be expected
to work cooperatively with other robots or even with human-beings. Therefore,
the way to investigate the communication in a group of robots, either between
‘human-controlled’ robots and assistant robots, or autonomous robots themselves,
has become highly significant with the clear motivation that it enables the team of
robots to maximise their utility.

The main types of communications between cooperative robots can be classified
into explicit and implicit. Explicit communication is mostly defined as direct
communication for sharing specific information to achieve a common goal
for a team of robots. The early research done by Yanco and Stein (1993)
describes mobile robots engaged in a cooperative task that requires ‘Adaptive
Communication’, which refers to robots communicating with a fixed uninterpreted
symbolic vocabulary. The language created for the robots may not provide
support for an optimal solution to a particular task, being less able to handle
complicated circumstances in a dynamic environment. Other relevant examples
about ‘explicit communication’ can also been found in Rus et al. (1995) and
Chaimuwicz et al. (2001). On the other hand, ‘Implicit Communication’ occurs as
a side-effect of robots’ actions, or through the way they affect the environment
(Pereira et al., 2002), which offers several immediate advantages such as simplicity,
robustness to errors, lower cost and efficiency of task performance, etc. over explicit
communication.

A number of inference approaches for human-robot teamwork systems
and applications already exist based on different types of communications,
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for instance, non-verbal communication based inference (Breazeal et al., 2005),
observable behaviour-based intention inference (Inagaki et al., 1995). In this
paper, we describe our fuzzy signatures based inference approach, then extend
the intentional inference by applying human eye gaze information for modelling
the communication in a group of cooperative robots to better predict human
intentions.

1.1 Eye gaze for communication

Eye gaze is tightly coupled with human cognitive processes, which has served as an
informative mode of communication and interaction throughout history. In fact,
human beings communicate in abbreviated ways dependent on prior interactions
and shared knowledge. In addition, humans share information about intentions
and future actions also using eye gaze. Among primates, humans are unique in the
whiteness of the sclera and amount of sclera shown, essential for communication
via interpretation of eye gaze.

According to the common capability and advantage of using eye gaze as well as
the increasing availability of relatively inexpensive and reliable eye tracking systems,
much interest has been sparked in their potential applications in a large number
of fields, particularly for human-computer, human-robot/agent interaction, user
interface design (Jacob, 1991), computer game technologies (Gedeon et al., 2008),
as a disambiguation channel in conversational communication (Tanaka, 1998),
and as a facilitator in computer supported human-human communication and
collaboration (Vertegaal, 1999). This is also the major motivation for us to integrate
richer and more complex human eye gaze information regarding a person’s interest
and intentions into the current cooperative robots model to further improve the
inference approach.

1.2 Research scenario

We consider a research scenario of co-operating intelligent robots proposed by
Terano (1993), which we style as context-dependent reconstructive communication
(Zhu and Gedeon, 2008): there are set of identical oblong shaped tables in a room.
Various configurations can be built from them, such as a large U shape, a large
T shape, a very large oblong, rows of tables, etc. (see Figure 1).

A group of autonomous intelligent robots is supposed to build the actual
configuration according to the exact instructions given to the Robot Foreman (R0).
The other robots have no direct communication links with R0, but they are able to
observe the behaviour of R0 and all others, and they all posses the same codebook
containing all possible table configurations.

The individual tables can be shifted or rotated, but two robots are always
needed to actually move a table, as they are heavy. If two robots are pushing the
table in parallel, the table will be shifted according to the joint forces of the robots.
If the two robots are pushing in the opposite directions positioned at the diagonally
opposite ends, the table will turn around the centre of gravity. If two robots are
pushing in parallel, and one is pushing in the opposite direction, the table will not
move (see Figure 2).
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Figure 1 Task configurations (see online version for colours)

Figure 2 Push, rotate and stop configurations (see online version for colours)

Under these conditions the task can be solved, if all robots are provided with
suitable algorithms that enable ‘intention guessing’ from the actual movements and
positions, even though they might be ambiguous.

2 Fuzzy signature

Fuzzy signatures have been regarded as an effective approach to solve the problem
of rule explosion in traditional fuzzy inference systems: constructing characteristic
fuzzy structures, modelling the complex structure of the data points (bottom up)
in a hierarchical manner (Kóczy et al., 1999; Gedeon et al., 2001; Vámos et al.,
2001). Fuzzy signatures start with a generalised representation of fuzzy sets called
Vectorial Fuzzy Sets (or vector valued fuzzy sets) (VFS). A VFS, A, on X =
{X1, . . . , Xn} can be written as:

A = (X, µA). (1)

The membership function µ
A

can be defined as:

µ
A

: X → [0, 1]n. (2)
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Now, a fuzzy signature is a recursive VFS such that each vector is another VFS
(called a branch) or an atomic value (called a leaf):

A : X → [ai]ki=1 (3)

where ai =

{
[aij ]ki

j=1 ; if branch

[0, 1] ; if leaf
.

In general, fuzzy signatures result in a much reduced order of complexity, at
the cost of slightly more complex aggregation techniques. Unlike conventional
rule based hierarchical fuzzy systems, each branch in a fuzzy signature uses a
different aggregation function to find the importance of that branch to its parent.
Aggregation of a fuzzy signature finds the final atomic result called ‘degree of
match’. Also, fuzzy signatures are different to conventional decision trees as
they use a bottom up inference mechanism, and when there is missing or noisy
input data it still can finds a degree of match. We consider a fuzzy signature
as a hierarchical fuzzy descriptor of the object it represent. Figure 3 illustrates
an example of a fuzzy signature structure which was constructed for a SARS
pre-clinical diagnosis system by Wong et al. (2004).

Figure 3 A fuzzy signature example

The example fuzzy signature in Figure 3 is only a descriptor for one patients data
for a single day (called one data point). Mendis (2008) has shown that it is possible
to use one fuzzy signature as a descriptor of several data points of the same object.
This type of fuzzy signature is called a polymorphic fuzzy signature and has been
used in this paper. Further, Mendis and Gedeon (2008a, 2008b) have shown that
this type of fuzzy signature can outperform the results of OWA and outperform
both the results and computational complexity of Choquet Integral systems in
complex structured real world problems.

3 Fuzzy signatures construction for cooperative robot intention inference

The process of constructing fuzzy signature has also been discussed in Wong et al.
(2004):

Let SS0 denote the set of all fuzzy signatures whose structure graphs are
sub-trees of the structural (‘stretching’) tree of a given signature S0. Then the
signature sets introduced on SS0 are defined by:

AS0 : X → SS0 . (4)
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In this case, the prototype structure S0 describes the ‘maximal’ signature type that
can be assumed by any element of X in the sense that any structural graph obtained
by a set of repeated omissions of leaves from the original tree of S0 might be the
tree stretching the signature of some AS0 .

In practice, there are two approaches to construct the sub-structures of the fuzzy
signature, S0 (Wong et al., 2003; Chong et al., 2002):

• predetermined by a human expert in the field

• determined by finding the separability from the data.

In our cooperative robots case, as we are handling complex circumstances and
we actually do not have enough data, so we will only use the first approach
to construct the fuzzy signatures. Based on the context of the robots scenario,
we propose the use of an alternative form of fuzzy signature, which uses a better
hierarchical structure where the internal nodes are simple, while the leaves are
populated with small rule bases, generally of one variable. The instructions and
assumptions about the CRC framework are as follows:

1 Instructions:

a A group of intelligent robots of size 1 × 1: Ri : R0, R1, . . . , Rn, R0 is the
‘foreman’.

b A set of random shape tables of size 1 × 2: T1, T2, . . . , Tn.

c A set of possible configurations made up of tables: S1, S2, . . . , Sn, where
one of them is the final task.

2 Assumptions:

a ‘Foreman’ (R0) represents a human-being (controlled by a human).

b Only the ‘Foreman’ (R0) knows the final task.

c Other robots (Ri) do not know the final task, but they know all the
possible table shapes (S1, S2, . . . , Sn);

d Other robots (Ri) know who the foreman (R0) is.

Figure 4 is a snapshot of an initial configuration of all the objects, including tables,
robots and final task shape in our simulator.

According to the above descriptions, to construct the fuzzy signatures for
inferring the foreman’s following action, we need to figure out which ‘attributes’
will be essentially related to the foreman’s intentional action based on the current
situation. Since the current situation is that there are a set of tables, if the foreman
is intended to do something, he should go and touch a particular table first or get
closer at least. So the first ‘essential attribute’ is the ‘Distance’ between the foreman
and each table in the environment. Figure 5 illustrates the membership function of
‘Distance’.

However, there exists a possible situation that can not be handled by ‘Distance’
only: if the foreman moves towards to a table then touches it, but after that he
moves away or switches to another table immediately, the other robots still can not
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infer what the foreman is going to do. In order to solve this problem, we need to
add another ‘attribute’ called ‘Waiting Time’ (the membership is similar in shape to
Figure 5 and is not shown) which is used to measure how long a robot (Ri) stops
at a particular spot. The reason why we need to measure the stopping time is that it
is too difficult for a robot to perceive the meaning of the scene using instantaneous
information (a snapshot) only (Inagaki et al., 1993).

Figure 4 A random initial configuration of objects (dark squares), and robots (circles, the
darker circle is the ‘foreman’), and target configuration (asterisks) (see online
version for colours)

Figure 5 Fuzzy membership function of distance

By combining the ‘Waiting Time’ with the previous item ‘Distance’, the final fuzzy
signatures for intention inference will be formed to the structure in Figure 6.

Under this circumstance, other robots will be able to infer the foreman’s next
action according to his current behaviour. For instance, if the ‘Distance’ between
the foreman (R0) and a table (Ti) is Touched, meanwhile the foreman’s ‘Waiting
Time’ at that spot is Long, then it implies that the foreman is ‘Waiting for Help’
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which means another robot (Ri) should go to Ti and help the foreman. Otherwise
if neither of the conditions are satisfied, this means other robots will not assume
the foreman is going to carry out any intentional action because they can not
figure it out by observation of the foreman’s current behaviour.

Figure 6 Fuzzy signatures for CRC

4 Pattern matching with possibility calculation for task inference

So far we have discussed the problem of inferring the foreman’s intentional action
by constructing the fuzzy signatures based on the foreman’s current behaviour.
In some sense, it means other robots still have to count on the foreman completely
and it actually does not show that these robots are intelligent enough that they can
help the foreman to finish the final task effectively and efficiently as well as to truly
reduce the cost of the communication between them.

In order to improve the modelling technique, it is important for us to consider
the current situation after each movement of a table, which means other robots
should be able to guess which table shape is likely to be the most possible one
according to foreman’s previous actions and the current configuration of tables.
The solution here is to measure how close the current table configuration/shape
matches each of the possible shapes after the foreman’s intentional actions.
Therefore, apart from the previous fuzzy signatures, another modelling structure
has been constructed for robot’s further decision making.

Figure 7 shows another tree structure with all the leaves representing each
possible table shape as well as its possibility value respectively. The following
strategies show how this structure works:

We have a set of tables: T1, T2, . . . , Tn; the total number of tables is n:

1 IF foreman and a robot push a table to a place which matches one of the
possible table shapes: Si

THEN increase the possibility value of Si: PVSi + 1/n

2 IF foreman and a robot push a table to a place which does not match any of
the possible table shapes
THEN none of the possibility values will change
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3 IF foreman and a robot push a table which matched Si to a place where
does not match any of the possible shapes
THEN decrease the possibility value of Si: PVSi − 1/n

4 IF foreman and a robot push a table which matched Si to a place where
matches another possible shape: Sj

THEN decrease the possibility value of Si: PVSi
− 1/n

AND increase the possibility value of Sj : PVSj + 1/n

5 IF two robots (neither is foreman) push a table to a place where matches one
of the possible table shapes: Si

THEN the possibility value of Si, i.e., PVSi will not change.

Figure 7 Structure of pattern matching with possibility calculation

From the above strategies we can find that the possibility value of a possible
shape Si will only change when the foreman is one of the working robots who carry
out the action, otherwise the possibility value will not change. The reason why we
model the situation like this is due to the initial assumption mentioned earlier, that
the foreman is the only robot who knows the final task so that we assume all the
actions carried out by the foreman are directly related to the final task. Since other
robots do not know the final task, their actions are not considered to be definitely
correct and directly related to the final task so none of the possibility values will
change according to these actions.

5 Eye gaze based fuzzy inference approach

The above detailed description has shown the successful modelling of cooperative
robot communication by applying our fuzzy solution. In the following section,
we discuss in detail how to use fixation information from a user’s eye gaze to
perform the intentional inference in the same intelligent robots scenario.

Figure 8 illustrates the recorded original gaze points from a user’s intentional
decision-making process for identifying a particular object they intend to move
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as well as the corresponding destination for those two assistant robots to carry
out the movement in the simulator. The raw eye-gaze path is a bit complex and
difficult to interpret, consequently, we further filter the gaze points into fixations
(see Figure 9), which provide a much easier and more interpretable form of
information from which the user’s interest and intention.

Figure 8 A user’s original gaze points for identifying an object and destination
(see online version for colours)

Figure 10 demonstrates an example of part of the window for a ‘Horizontal Rows’
task overlaid with a user’s eye gaze path. The size of the black circle in the
image represents the duration of the relevant fixations. Please note that the initial
configuration of robots and tables is the same for all the possible tasks, and in order
to make the scene be visible, the size of fixation circles on the scene representing
fixation duration has been reduced to the same value, which are actually not
representing the probable area of user’s interest, but the exact value of fixation
duration is shown below the fixation number in each of the black circles.

The following description shows the major steps of the fuzzy inference for
eye-gaze fixation (Gedeon et al., 2008):

1 Projection: Project each of the fixation onto a corresponding trapezoidal
shaped fuzzy membership function which represents the degree of possibility
(between 0 and 1) of the user’s eye gaze indicating his interest or intention in
the particular region through rows and columns respectively.

2 Union: Sum the projected fuzzy membership functions by using a union
operator via rows and columns respectively.

3 Intersection: Combine the horizontal and vertical fuzzy inference results using
an intersection operator.
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Figure 9 Reduced fixations for identifying an object and destination (see online version
for colours)

Figure 10 Fixations overlaid on part of the scene for ‘HR’ task (see online version
for colours)
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6 Evaluation

The first three experiments performed using our cooperative robot simulator
mainly assess how well our assistant robots are able to cooperate with the
human-controlled foreman by applying the fuzzy signature and possibility
calculation based inference. The latter two experiments focus on differences between
using our fuzzy inference based human eye-gaze information interpretation,
eye-gaze information without the fuzzy inference, as well as performance
comparison with the previous experiments. Table 1 lists the basic instructions for
all the experiments.

Table 1 Basic instructions for experiments

Item Description

Number of tables 4

Test cases (‘Table shapes’) 1 Horizontal Rows (HR)
2 Vertical Rows (VR)
3 T Shape (T)
4 U Shape (U)

Test times (Repetitions) 5

Robot’s speed About three movements per second

Measurements 1 Number of robot steps
2 Number of table movements (Shifting or Rotating)
3 Time to finish a task

6.1 Experiment description

Experiment 1: Two humans operate their own robots, they are allowed to have
verbal communication.

Experiment 2: One assistant robot cooperates with a human-controlled foreman.

Experiment 3: A human-controlled foreman and one assistant robot start the task
which is then accomplished by the two assistant robots.

Experiment 4: Two assistant robots complete the task by human’s direct eye
gaze indications (without fuzzy eye-gaze inference) of objects and targets with the
confirmations of pressing a button.

Experiment 5: Two assistant robots complete the task by human’s eye gaze
indications of objects and targets with fuzzy eye-gaze inference and no confirmation
button pressing.

6.2 Results and discussions

Although we allowed players to have verbal communications in Experiment 1
(see Table 2), the human-controlled robots still took the most steps on average
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to finish each of the test tasks. The reason for this phenomenon is that players
might make different decisions in dynamic situations. Therefore, it is possible for
them to decide to move different objects at the same time rather than aiming at the
same target or placing the same object with different route plans, which will cost
them extra steps to reach the common target or correct previous incorrect actions.
That is, even with the explicit communication (talking) possible, it may be that it is
only after incompatible moves that humans notice that they are following different
plans.

Table 2 Average robot steps, table movements and time: two humans

Experiment 1 HR VR T U

Robot A (controlled by human) 163.0 136.8 149.2 127.4
Robot B (controlled by human) 141.6 159.0 151.2 143.4
Total robot steps 304.6 295.8 300.4 270.8
Shifting movements 40.0 43.0 42.8 38.6
Rotating movements 7.2 6.8 7.2 5.6
Total movements 47.2 49.8 50.0 44.2
Time (s) 74.6’ 75.0’ 77.6’ 62.2’

The result in Experiment 2 is quite good compared with Experiments 1 and 3
(see Table 3). Since the assistant robot could infer the human-controlled foreman
robot’s action by observation and cooperate with it, it is not necessary for the
player to communicate with the other robot directly, which is different from the
situation in Experiment 1. So the players can make their own decision without any
other disturbance, which may be what leads to an improvement in all the costs,
including robots steps, object movements, and time.

Table 3 Average robot steps, table movements and time: 1 human + 1 robot

Experiment 2 HR VR T U

Foreman (controlled by human) 112.4 110.6 113.6 108.4
Robot A 153.6 141.4 156.4 143.2
Total robot steps 266.0 252.0 270.0 251.6
Shifting movements 39.2 40.6 41.0 36.8
Rotating movements 6.8 4.8 4.8 4.8
Total movements 46.0 45.4 45.8 41.6
Time (s) 66.0’ 56.0’ 61.8’ 55.8’

Apart from the second test case (vertical rows), the robots in Experiment 3
made the most object movements in the rest of the test cases (see Table 4).
The main reason here would be suboptimal strategies of route planning and
obstacle avoidance.

In most of the test cases, the total steps made in Experiment 3 are more than
Experiment 2 but still better than robots totally-controlled by humans. This is of
course the key benefit of our work, to be able to complete the task, and to do it
faster than two humans is an excellent result.
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Table 4 Average robot steps, table movements and time: 1 human + 2 robots

Experiment 3 HR VR T U

Foreman (controlled by human) 28.6 26.8 29.0 24.4
Robot A 115.6 103.8 118.2 106.8
Robot B 143.4 142.8 150.0 132.0
Total robot steps 287.6 273.4 297.2 263.2
Shifting movements 42.0 40.2 43.6 41.8
Rotating movements 7.4 4.8 7.2 6.0
Total movements 49.4 45.0 50.8 47.8
Time (s) 69.0’ 65.0’ 71.4’ 64.0’

Table 5 shows the results of using user’s eye-gaze indication directly. Compared
with previous three experiments, we can easily find there is a big improvement
in the cost of time for the two assistant robots to accomplish every test task.
The statistical data in Table 7 clearly tells us that, on average, by using eye-gaze
indication as the communication between the user and the other two assistant
robots, it could be 21.5% faster than the case of two human-operated robots, 16%
faster than 1 human-controlled robot plus two assistant robots, and even around
5% faster than the previous best case. This significant reduction is due to two major
reasons:

1 The time saved during the table rotation: since the assistant robot can only
infer the human-operated robot’s actions, once a sequence of table shifts is
completed and then a rotation is needed, the foreman will stop pushing the
table and start waiting for the assistant robot to figure out they need to rotate
the table. It normally takes some time for the assistant robot to finish the
inference of switching shifting to rotating and also a little while to move to
the other side of the object to carry out the table rotation.

2 The eye-gaze indications for the next object and corresponding destination
can be performed simultaneously when the two assistant robots are still
moving the last object, which keeps the process of completing the entire task
progressing continuously.

Table 5 Confirmation button without applying fuzzy gaze inference method

Experiment 4 HR VR T U

Robot A 130.2 123.8 127.0 119.6
Robot B 139.2 130.4 135.2 125.4
Total robot steps 269.4 254.2 262.2 245.0
Shifting movements 41.8 41.0 44.8 39.6
Rotating movements 6.4 4.0 4.0 4.8
Total movements 48.2 45.0 48.8 44.4
Time (s) 59.9’ 54.7’ 58.2’ 53.4’

After applying our fuzzy eye-gaze inference approach, the results in Tables 6 and 8
demonstrate another significant time-saving which gives about 7% improvement
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compared to the experiment using eye-gaze indication directly. This is because in
the 4th experiment, the other two assistant robots only inferred the user’s eye-gaze
indication when it was exactly located on the object with the confirmation of
pressing a button, which turned out to be a bit difficult and time-consuming for
the user to so precisely control his eye gaze position, since people’s eye gaze might
be only close to the object rather than directly on it but still show his interest
and potential intention. So in Experiment 5, our new inference approach effectively
provided a more efficient and natural communication between the user and the
other two assistant robots through the interpretation of eye-gaze indication.

Table 6 Fuzzy inference method without confirmation button

Experiment 5 HR VR T U

Robot A 121.0 118.0 125.2 121.8
Robot B 137.8 126.2 130.2 123.6
Total robot steps 258.8 244.2 255.4 245.4
Shifting movements 41.0 40.8 44.2 40.0
Rotating movements 6.8 4.0 4.2 5.2
Total movements 47.8 44.8 48.4 45.2
Time (s) 54.8’ 51.6’ 53.5’ 50.9’

Table 7 Time improvements in Experiment 4 compared to Experiments 1–3

Experiment HR (%) VR (%) T (%) U (%) Average (%)

1 19.7 27.1 25.0 14.1 21.5
2 9.2 2.3 5.8 4.3 5.4
3 13.2 15.8 18.5 16.6 16.0

Table 8 Time improvements in Experiment 5 compared to Experiments 1–4

Experiment HR (%) VR (%) T (%) U (%) Average (%)

1 26.5 31.2 31.1 18.2 26.8
2 17.0 7.9 13.4 8.8 11.8
3 20.6 20.6 25.1 20.5 21.7
4 8.5 5.7 8.1 4.7 6.8

7 Conclusions

Through the evaluation for our discussed fuzzy methods based inference
approaches, the experiments have demonstrated that it is possible for us to model
the communication between robots/agents and human in a cooperative working
environment, for them to correctly infer a human’s intention with a suitable
artificial intelligence techniques (e.g., fuzzy signatures).
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A further extended notion of replacing human-action based inference by using
human eye-gaze interpretation has also been discussed and evaluated based on the
same cooperative robots scenario. According to the relevant results, a significant
improvement has been illustrated by applying direct human eye-gaze indication,
which quantitatively points out that using eye gaze can be more efficient than other
human-action based inference approaches.

Furthermore, after more time-saving demonstrated in the experiment by
applying our fuzzy eye-gaze inference approach, we safely arrive at the conclusion
that this approach can offer us a more sophisticated way for the assistant robots
to infer a human’s intention, which also effectively eliminates any physical control
from the human’s side, providing more flexibilities for handling multiple tasks at
the same time. For example, answering a phone call without stopping the current
communication through eye gaze.

Such work is the first step for us to start exploring how useful a human-being’s
eye gaze information will be in a variety of application areas and we conclude that
in the future, eye-gaze technology will be more beneficial as well as further enhance
communication or interaction between human and robots.
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